Interaction of the sulfonylthiourea HMR 1833 with sulfonylurea receptors and recombinant ATP-sensitive K(+) channels: comparison with glibenclamide.

نویسندگان

  • U Russ
  • U Lange
  • C Löffler-Walz
  • A Hambrock
  • U Quast
چکیده

The novel sulfonylthiourea 1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea (HMR 1883), a blocker of ATP-sensitive K(+) channels (K(ATP) channels), has potential against ischemia-induced arrhythmias. Here, the interaction of HMR 1883 with sulfonylurea receptor (SUR) subtypes and recombinant K(ATP) channels is compared with that of the standard sulfonylurea, glibenclamide, in radioligand receptor binding and electrophysiological experiments. HMR 1883 and glibenclamide inhibited [(3)H]glibenclamide binding to SUR1 with K(i) values of 63 microM and 1.5 nM, and [(3)H]opener binding to SUR2A/2B with K(i) values of 14/44 microM and 0.5/2.8 microM, respectively (values at 1 mM MgATP). The interaction of HMR 1883 with the SUR2 subtypes was more sensitive to inhibition by MgATP and MgADP than that of glibenclamide. In inside-out patches and in the absence of nucleotides, HMR 1883 inhibited the recombinant K(ATP) channels from heart (Kir6.2/SUR2A) and nonvascular smooth muscle (Kir6.2/SUR2B) with IC(50) values of 0.38 and 1.2 microM, respectively; glibenclamide did not discriminate between these channels (IC(50) approximately 0.026 microM). In whole cells, the recombinant vascular K(ATP) channel, Kir6.1/SUR2B, was inhibited by HMR 1883 and glibenclamide with IC(50) values of 5.3 and 0.043 microM, respectively. The data show that the sulfonylthiourea exhibits a selectivity profile quite different from that of glibenclamide with a major loss of affinity toward SUR1 and slight preference for SUR2A. The stronger inhibition by nucleotides of HMR 1883 binding to SUR2 (as compared with glibenclamide) makes the sulfonylthiourea an interesting tool for further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats

There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...

متن کامل

A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ Channels

We have cloned an isoform of the sulfonylurea receptor (SUR), designated SUR2. Coexpression of SUR2 and the inward rectifier K+ channel subunit Kir6.2 in COS1 cells reconstitutes the properties of K(ATP) channels described in cardiac and skeletal muscle. The SUR2/Kir6.2 channel is less sensitive than the SUR/Kir6.2 channel (the pancreatic beta cell KATP channel) to both ATP and the sulfonylurea...

متن کامل

Cardioselective K(ATP) channel blockers derived from a new series of m-anisamidoethylbenzenesulfonylthioureas.

Sulfonylthioureas exhibiting cardioselective blockade of ATP-sensitive potassium channels (K(ATP) channels) were discovered by stepwise structural variations of the antidiabetic sulfonylurea glibenclamide. As screening assays, reversal of rilmakalim-induced shortening of the cardiac action potential in guinea pig papillary muscles was used to probe for activity on cardiac K(ATP) channels as the...

متن کامل

Antidiabetic sulfonylurea stimulates insulin secretion independently of plasma membrane KATP channels.

Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This...

متن کامل

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 299 3  شماره 

صفحات  -

تاریخ انتشار 2001